742 research outputs found

    A Upf3b-mutant mouse model with behavioral and neurogenesis defects.

    Get PDF
    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders

    “An ethnographic seduction”: how qualitative research and Agent-based models can benefit each other

    Get PDF
    We provide a general analytical framework for empirically informed agent-based simulations. This methodology provides present-day agent-based models with a sound and proper insight as to the behavior of social agents — an insight that statistical data often fall short of providing at least at a micro level and for hidden and sensitive populations. In the other direction, simulations can provide qualitative researchers in sociology, anthropology and other fields with valuable tools for: (a) testing the consistency and pushing the boundaries, of specific theoretical frameworks; (b) replicating and generalizing results; (c) providing a platform for cross-disciplinary validation of results

    Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission

    Get PDF
    Background: Carbapenemase-producing Enterobacteriaceae (CPE), including KPC-producing Klebsiella pneumoniae (KPC-Kpn), are an increasing threat to patient safety. Objectives: To use WGS to investigate the extent and complexity of carbapenemase gene dissemination in a controlled KPC outbreak. Materials and methods: Enterobacteriaceae with reduced ertapenem susceptibility recovered from rectal screening swabs/clinical samples, during a 3 month KPC outbreak (2013–14), were investigated for carbapenemase production, antimicrobial susceptibility, variable-number-tandem-repeat profile and WGS [short-read (Illumina), long-read (MinION)]. Short-read sequences were used for MLST and plasmid/Tn4401 fingerprinting, and long-read sequence assemblies for plasmid identification. Phylogenetic analysis used IQTree followed by ClonalFrameML, and outbreak transmission dynamics were inferred using SCOTTI. Results: Twenty patients harboured KPC-positive isolates (6 infected, 14 colonized), and 23 distinct KPC-producing Enterobacteriaceae were identified. Four distinct KPC plasmids were characterized but of 20 KPC-Kpn (from six STs), 17 isolates shared a single pKpQIL-D2 KPC plasmid. All isolates had an identical transposon (Tn4401a), except one KPC-Kpn (ST661) with a single nucleotide variant. A sporadic case of KPC-Kpn (ST491) with Tn4401a-carrying pKpQILD2 plasmid was identified 10 months before the outbreak. This plasmid was later seen in two other species and other KPC-Kpn (ST14,ST661) including clonal spread of KPC-Kpn (ST661) from a symptomatic case to nine ward contacts. Conclusions: WGS of outbreak KPC isolates demonstrated blaKPC dissemination via horizontal transposition (Tn4401a), plasmid spread (pKpQIL-D2) and clonal spread (K. pneumoniae ST661). Despite rapid outbreak control, considerable dissemination of blaKPC still occurred among K. pneumoniae and other Enterobacteriaceae, emphasizing its high transmission potential and the need for enhanced control efforts

    Blow-up profile of rotating 2D focusing Bose gases

    Full text link
    We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation Ω\Omega. First we study the behavior of the ground state when the coupling constant approaches a_a\_* , the critical strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of Ω\Omega, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141--156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for NN bosons, interacting with a potential rescaled in the mean-field manner a_NN2β1w(Nβx),with--a\_N N^{2\beta--1} w(N^{\beta} x), with wapositivefunctionsuchthat a positive function such that \int\_{\mathbb{R}^2} w(x) dx = 1.Assumingthat. Assuming that \beta < 1/2andthat and that a\_N \to a\_*sufficientlyslowly,weprovethatthemanybodysystemisfullycondensedontheGrossPitaevskiigroundstateinthelimit sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit N \to \infty$

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Radiation-induced skin injury in the animal model of scleroderma: implications for post-radiotherapy fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiation therapy is generally contraindicated for cancer patients with collagen vascular diseases (CVD) such as scleroderma due to an increased risk of fibrosis. The tight skin (TSK) mouse has skin which, in some respects, mimics that of patients with scleroderma. The skin radiation response of TSK mice has not been previously reported. If TSK mice are shown to have radiation sensitive skin, they may prove to be a useful model to examine the mechanisms underlying skin radiation injury, protection, mitigation and treatment.</p> <p>Methods</p> <p>The hind limbs of TSK and parental control C57BL/6 mice received a radiation exposure sufficient to cause approximately the same level of acute injury. Endpoints included skin damage scored using a non-linear, semi-quantitative scale and tissue fibrosis assessed by measuring passive leg extension. In addition, TGF-β1 cytokine levels were measured monthly in skin tissue.</p> <p>Results</p> <p>Contrary to our expectations, TSK mice were more resistant (i.e. 20%) to radiation than parental control mice. Although acute skin reactions were similar in both mouse strains, radiation injury in TSK mice continued to decrease with time such that several months after radiation there was significantly less skin damage and leg contraction compared to C57BL/6 mice (p < 0.05). Consistent with the expected association of transforming growth factor beta-1 (TGF-β1) with late tissue injury, levels of the cytokine were significantly higher in the skin of the C57BL/6 mouse compared to TSK mouse at all time points (p < 0.05).</p> <p>Conclusion</p> <p>TSK mice are not recommended as a model of scleroderma involving radiation injury. The genetic and molecular basis for reduced radiation injury observed in TSK mice warrants further investigation particularly to identify mechanisms capable of reducing tissue fibrosis after radiation injury.</p
    corecore